

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 1005-1009

Tetrahedron Letters

Synthesis of 7-oxa-phomopsolide E and its C-4 epimer

Miaosheng Li, Jana Scott and George A. O'Doherty*

Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA

Received 12 November 2003; accepted 19 November 2003

Abstract—A flexible, enantioselective route to highly functionalized α , β -unsaturated δ -lactones has been applied to the synthesis of 7-oxa-phomopsolide E and its C-4 epimer. This approach relies on the application of the Noyori asymmetric hydrogenation of furyl ketone to produce the secondary furyl alcohol in high enantioexcess, which can be stereoselectively transformed into α , β -unsaturated- δ -lactones by a short, highly diastereoselective oxidation and reduction sequence. DCC and Mitsunobu coupling were used to introduce the side chains of the two natural product analogs.

© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The American elm tree thrives in a wide range of soils and climatic conditions, making it one of the most widely planted street trees in North America.¹ Unfortunately, a completely healthy 100-year-old American elm can be killed in as little as two weeks if infected with Dutch elm disease,² and over 40 million elm trees in the United States have been killed since the arrival of Dutch elm disease.³ The fungus responsible for Dutch elm is spread from tree to tree by the elm bark beetle (*Scolytid beetle*).

The devastation caused by Dutch elm disease brought about research to find natural compounds that have antiboring/antifeeding activity against the elm bark beetle. As a result, Grove,⁴ and later Stierle,⁵ found a series of related 6-substituted 5,6-dihydro-5-hydroxypyran-2-ones, the phomopsolides (Fig. 1), which possess the desired deterrent activity for *Scolytid beetles* as well as potent antimicrobial activity against *Staphylococcus aureus*.

As part of a continuing program directed at the discovery of new antibiotics, we have investigated the enantioselective syntheses of various biologically important pyranone natural products both from dienoates⁶ and furan alcohols.^{7,8} In the case of the phomopsolide class of natural products, our furan

Figure 1. Structures of phomopsolides.

methodology was successfully applied to the synthesis of phomopsolide C (1c).⁹ Our approach derives its asymmetry from (*S*)-lactic acid and the application of the Sharpless asymmetric dihydroxylation of vinylfuran. The resulting secondary furan alcohol is produced in high enantioexcess and can be stereoselectively transformed into α,β -unsaturated- δ -lactones via a short highly diastereoselective oxidation and reduction sequence. In our previous synthesis of phomopsolide C (Scheme 1), a Wittig olefination reaction was used to introduce the side chain and was further elaborated into the target structure.

Because of our motivation to test similar compounds as antibiotics and against Dutch elm disease, we felt that a related approach to our synthesis could easily generate structural analogs of the phomopsolide family for biological testing. To these ends the syntheses of the two C-4 diastereomers of 7-oxa-phomopsolide E (7a and 7b) were undertaken. The two targets can easily be envisioned being prepared in a convergent manner from the

^{*} Corresponding author. Fax: +1-304-293-4904; e-mail: george. o'doherty@mail.wvu.edu

^{0040-4039/\$ -} see front matter @ 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2003.11.089

Scheme 1. Retrosynthesis of phomopsolide C.

three intermediates pyranone 3, protected lactic acid 6, and tiglic acid 8 (Scheme 2).

Scheme 2. Retrosynthetic analysis of 7-oxa-phomopsolide D.

In our previous furan approaches we derived the pyranone asymmetry by means of the Sharpless asymmetric dihydroxylation of vinylfuran.^{8,10} Because the enantioselectivity of the dihydroxylation reaction was less than perfect,¹¹ we searched for a better asymmetric reaction and settled on the Noyori reduction of acylfurans. Thus, the furyl alcohol **5** was enantioselectively prepared from a Noyori asymmetric hydrogenation of furyl ketone **12**, which occurred in high yield (84%) and ideal enantioexcess (>96% ee). In turn, the acylfuran **12** could easily be prepared in three steps from glycolic acid **9** via a 2-lithiofuran addition to the TBS-protected amide **11** (Scheme 3).¹²

The synthesis of both 7-oxa-phomopsolide E 7a and its 4-*epi* isomer 7b began with the conversion of furyl

Scheme 3. Reagents and conditions: (a) pyrrolidine, xylene, $150 \,^{\circ}C$ (83%); (b) TBSCl, DMF, Imid., rt (83%); (c) furan/*n*-BuLi, THF, $-78 \,^{\circ}C$ (87%); (d) (*1S*,2*S*) Noyori catalyst (13), HCO₂H/Et₃N (1:1) (84%).

alcohol **5** to pyranone **3** (Scheme 4). Treatment of furyl alcohol **5** with NBS¹³ in aqueous THF (Achmatowicz reaction),¹⁴ gave pyranone **14** in 92% yield. The reaction of **14** with Jones reagent gave a ketolactone intermediate, which was taken on without purification to a Luche reduction¹⁵ with NaBH₄ and CeCl₃ in MeOH, to give pyranone **3** in 83% yield from **14**.

Scheme 4. Reagents and conditions: (a) NBS, NaHCO₃, NaOAc, THF, H₂O, 0 °C (92%); (b) Jones reagent, acetone, 0 °C, then NaBH₄/ CeCl₃, MeOH/CH₂Cl₂, -78 °C (83%).

The desired carboxylic acid **6** was synthesized from (*S*)ethyl lactate **15** in two steps and 78% yield. This sequence involved hydroxyl group protection of **15** with TBDPSCl to give **16** followed by ester hydrolysis to form the acid **6** (Scheme 5).

Scheme 5. Reagents and conditions: (a) TBDPSCl, DMF, Imid., rt (95%); (b) KOH, MeOH, rt (82%).

The synthesis of 7-oxa-phomopsolide E 7a was then pursued using a DCC-mediated coupling between pyranone 3 and tiglic acid 8 to yield ester 17a (Scheme 6). A subsequent TBS-group deprotection using HF gave a 74% yield (two steps) of alcohol 18a. Once again, resorting to a DCC coupling reaction establishes the remaining carbons of analog 7a. Thus, a DCC coupling of 18a with acid 6 resulted in the protected natural product analog 19a, which was deprotected with HF/Py (2:1) complex providing 7-oxa-phomopsolide E 7a in 91% yield.

Scheme 6. Reagents and conditions: (a) 8, DCC, DMAP, CH₂Cl₂ (85%); (b) HF, CH₃CN (87%); (c) 6, DCC, DMAP, CH₂Cl₂ (89%); (d) HF/Py (2:1), CH₃CN (91%).

Scheme 7. Reagents and conditions: (a) 8, PPh₃, DEAD (61%); (b) HF, CH₃CN (82%); (c) 6, DCC, DMAP, CH₂Cl₂ (86%); (d) HF/Py (2:1), CH₃CN (88%).

The 4-*epi* isomer of **7a** (**7b**) was similarly prepared beginning with the esterification of pyranone **3** and tiglic acid **8** but this time under the Mitsunobu conditions (Scheme 7).¹⁶ Thus simply exposing pyranone **3** and tiglic acid **8** to a mixture of PPh₃ and DEAD gave ester **17b** in a 61% yield. Ester **17b** was deprotected with HF to give a 82% yield of alcohol **18b**. DCC coupling between alcohol **18b** and acid **6** gave protected 4-*epi*-7-oxa-phomopsolide E **19b**, and HF/Py (2:1) deprotection gave the natural product analog **7b** in 88% yield.

In conclusion, the highly enantio- and diastereocontrolled route to the α , β -unsaturated δ -lactone natural products developed in our laboratory was successfully applied to the syntheses of the natural product analogs 7-oxa-phomopsolide E and its 4-*epi* isomer, thus demonstrating the flexibility of the method. The synthesis of both **7a** and **7b** were completed in only six steps from furan **5** (10 steps from glycolic acid).

2. Experimental section

2.1. 1-(2'-Furyl)-2-*tert*-butyldimethylsilanyloxyethanone (12)

A solution of 2-lithiofuran (0.5 M, 26 ml, 13 mmol) was added dropwise to a solution of amide 11 (2.43 g, 10 mmol) in THF (50 mL) at -78 °C. After stirring for 1 h, the reaction was quenched by addition of satd NH_4Cl (20 mL). It was then diluted with Et_2O (200 mL) and water (100 mL). The organic layer was separated, washed with brine (50 mL), and dried (Na₂SO₄). Concentration afforded a residue that was purified by flash chromatography (10% EtOAc/hexane) to give the desired ketone 12 (2.09, 8.7 mmol, 87%), as a light yellow oil: R_f (20% EtOAc/hexane) = 0.61; IR (thin film, cm⁻¹) 2952, 2929, 2856, 1698, 1471, 1255, 1150, 1017, 839; ¹H NMR (270 MHz, CDCl₃) δ 7.58 (dd, J = 1.7, 0.7 Hz, 1 H), 7.32 (dd, J = 3.5, 0.7 Hz, 1 H), 6.54 (dd, J = 3.5, 1.7 Hz, 1H), 4.73 (s, 2H), 0.94 (s, 9H), 0.13 (s, 6H); ¹³C NMR (68 MHz, CDCl₃) δ 187.0, 150.9, 146.3, 118.0, 112.1, 67.1, 25.8, 18.5, -5.4; CI HRMS calcd for $[C_{12}H_{20}O_3Si+Na]^+$: 263.1074, found: 263.1076.

2.2. 1-(2'-Furyl)-2-*tert*-butyldimethylsilanyloxyethan-1*S*-ol (5)

To a 20 ml flask was added ketone 12 (1.42 g, 5.9 mmol), formic acid/triethylamine (1:1, 8 ml), CH₂Cl₂ (3 mL), and Noyori asymmetric transfer hydrogenation catalyst (*R*)-Ru(η^6 -mesitylene)-(*S*,*S*)-TsDPEN 13 $(18 \, \text{mg},$ 0.5 mol%). The resulting solution was stirred at room temperature for 24 h. The mixture was diluted with water (20 mL) and extracted with EtOAc (3×15 mL). The organic layers were combined, washed with satd NaHCO₃ and brine, dried over Na₂SO₄, and concentrated under reduced pressure to afford the crude alcohol. Flash chromatography (30% EtOAc/hexane) on silica gel yielded 1.20 g (5.0 mmol, 84%) of alcohol 5 as a light yellow oil: $R_{\rm f}$ (30% EtOAc/hexane) = 0.54; $[\alpha]_{\rm D}^{25}$ -15.4° (c 1.01, CH₂Cl₂); IR (thin film, cm⁻¹) 3447, 2954, 2930, 2884, 2857, 1471, 1473, 1361; ¹H NMR (270 MHz, CDCl₃) δ 7.37 (dd, J = 1.7, 0.7 Hz, 1H), 6.34 (dd, J = 3.2, 1.7 Hz, 1H), 6.30 (dd, J = 3.2, 0.7 Hz, 1H), 4.75 (dd, J = 6.4, 4.5 Hz, 1H), 3.85 (dd, J = 10.1, 4.5 Hz, 1H), 3.83 (dd, J = 10.1, 6.4 Hz, 1H), 2.89 (d, J = 4.2 Hz, 1H), 0.89 (s, 9H), 0.06 (s, 6H); ¹³C NMR (68 MHz, CDCl₃) δ 153.6, 142.0, 110.2, 107.0, 68.3, 65.6, 25.8, 18.2, -5.5; calcd for $[C_{12}H_{22}O_3Si-H_2O]^+$: 225.1310, found: 225.1296.

2.3. (5*S*,6*S*)-5-(2-Methyl-2-butenoyloxy)-6-(*tert*-butyldimethylsilanyloxymethyl)-5,6-dihydropyran-2-one (17a)

Alcohol 3 (136 mg, 0.53 mmol), tiglic acid (105 mg, 1.05 mmol), dicyclohexylcarbodiimide (217 g, 1.05 mmol), and dimethylaminopyridine (catalytic amount) were dissolved in 64 ml of CH₂Cl₂. The reaction mixture was stirred at room temperature for 5h. The reaction mixture was then filtered through a pad of Celite with excess Et₂O and concentrated. The crude product was purified by silica gel flash chromatography eluting with 10% EtOAc/hexane to yield 152 mg (0.45 mmol, 85%) of 17a as a clear oil: R_f (30% EtOAc/hexane) = 0.78; $[\alpha]_D^{25}$ $+250^{\circ}$ (c 1.10, CH₂Cl₂); IR (thin film, cm⁻¹) 2955, 2930, 2857, 1715, 1253, 1134, 1096, 1068, 837; ¹H NMR $(500 \text{ MHz}, \text{ CDCl}_3) \delta 7.07 \text{ (dd, } J = 10.0, 6.0 \text{ Hz}, 1 \text{ H}),$ 6.86 (dd, J = 14.0, 6.0 Hz, 1H), 6.17 (d, J = 9.5 Hz, 1H),5.33 (dd, J = 6.0 Hz, 2.5 Hz, 1H), 4.56 (ddd, J = 7.0, 7.0, 2.5 Hz, 1H), 3.88 (d, J = 7.0 Hz, 1H), 1.81–1.76 (m, 6H), 0.83 (s, 9H), 0.01 (d, J = 16.5 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 166.0, 162.4, 141.0, 139.3, 127.7, 124.9, 78.5, 60.9, 60.2, 25.7, 18.1, 14.5, 12.0, -5.5, -5.6; CI HRMS calcd for [C₁₇H₂₈O₅Si+H]⁺: 341.1784, found: 341.1772.

2.4. (5*S*,6*S*)-5-(2-Methyl-2-butenoyloxy)-6-hydroxymethyl-5,6-dihydropyran-2-one (18a)

Ester 17a (140 mg, 0.41 mmol), 1 mL of CH₃CN, and HF (5%, 2 ml, ~5.0 mmol) were added to a plastic vial and stirred at rt for 10 h. The reaction was quenched with saturated NaHCO₃, the aqueous layer was extracted with EtOAc (2×30 mL), and the organic layer was dried over Na₂SO₄, and concentrated under reduced pressure to afford the crude alcohol. Flash chromatography (60%)

EtOAc/hexane) on silica gel yielded 81 mg (0.36 mmol, 87%) of alcohol **18a** as a colorless oil: R_f (50% EtOAc/ hexane) = 0.23; $[\alpha]_D^{25}$ +285° (*c* 1.02, CH₂Cl₂); IR (thin film, cm⁻¹) 3446, 2934, 1712, 1649, 1382, 1256, 1131, 1066; ¹H NMR (300 MHz, CDCl₃) δ 7.02 (dd, J = 9.6, 6.0 Hz, 1H), 6.95–6.85 (m, 1H), 6.24 (d, J = 9.6 Hz, 1H), 5.41 (dd, J = 6.0, 2.7 Hz, 1H), 4.64 (ddd, J = 6.5, 6.5, 2.7 Hz, 1H), 3.94 (dd, J = 12.0 Hz, 6.9 Hz, 1H), 3.75 (dd, J = 12.0 Hz, 6.3 Hz, 1H), 1.82–1.78 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 167.1, 162.3, 140.2, 139.1, 127.1, 125.0, 79.1, 61.9, 60.3, 14.5, 11.9; ESI HRMS calcd for [C₁₁H₁₄O₅+Na]⁺: 249.0739, found: 249.0751.

2.5. (5*S*,6*S*)-5-(2-Methyl-2-butenoyloxy)-6-[(2*S*)-2-(*tert*-butyldiphenylsilanyloxy)propionyloxymethyl]-5,6-dihy-dro-pyran-2-one (19a)

Alcohol 18a (79 mg, 0.35 mmol), (2S)-(tert-butyldiphenylsilanoxy)propionic acid (228 mg, 0.70 mmol), dicyclohexylcarbodiimide (143 mg, 0.70 mmol), and dimethylaminopyridine (catalytic amount) were dissolved in 8 ml of CH₂Cl₂. The reaction mixture was stirred at room temperature for 6h. The reaction mixture was then filtered through a pad of Celite with Et₂O (40 mL) and concentrated. The crude product was purified by silica gel flash chromatography eluting with 20% EtOAc/hexane to yield 164 mg (0.31 mmol, 89%) of **19a** as a colorless oil: R_f (30% EtOAc/hexane) = 0.47; $[\alpha]_{D}^{25}$ +107° (c 1.02, CH₂Cl₂); IR (thin film, cm⁻¹) 3069, 2962, 2936, 2860, 1750, 1717, 1651, 1428, 1248, 1135, 824; ¹H NMR (270 MHz, CDCl₃) δ 7.69–7.62 (m, 4H), 7.44 (m, 6H), 6.99 (dd, J = 9.7, 5.7 Hz, 1H), 6.87 (m, 1H), 6.20 (d, J = 9.7 Hz, 1H), 5.03 (dd, J = 5.7, 2.7 Hz, 1H), 4.46 (ddd, J = 6.4, 6.4, 2.7 Hz, 1H), 4.31 (q, J = 6.7 Hz, 1H), 4.20 (m, 2H), 1.83–1.79 (m, 6H), 1.38 (d, J = 6.7 Hz, 3H), 1.08 (s, 9H); ¹³C NMR (68 MHz, CDCl₃) δ 173.2, 166.3, 161.6, 140.3, 140.0, 135.9, 135.7, 133.2, 133.0, 129.9, 127.7, 127.6, 127.2, 124.8, 75.8, 68.6, 61.5, 61.0, 26.7, 21.2, 19.2, 14.6, 12.0; calcd for [C₃₀H₃₆O₇Si+Na]⁺: 559.2123, found: 559.2137.

2.6. 7-Oxa-phomopsolide E (7a)

Ester 19 (153 mg, 0.29 mmol), 2 ml of CH₃CN, and HF/ Py (2:1) (2.5 M, 3 mL, $\sim 7.5 \text{ mmol}$) were added to a plastic vial and stirred at rt for 24 h. The reaction was quenched with saturated NaHCO₃, and the aqueous layer was extracted with EtOAc (2×40 mL). The organic layer was washed with HCl (1 M, 10 mL), dried over Na₂SO₄, and concentrated under reduced pressure to afford the crude alcohol. Flash chromatography (60% EtOAc/hexane) on silica gel yielded 78 mg (0.26 mmol, 91%) of 7-oxa-phomopsolide E 7a as a colorless oil: $R_{\rm f}$ (50% EtOAc/hexane) = 0.21; $[\alpha]_D^{25}$ +243° (c 1.20, CH₂Cl₂); IR (thin film, cm⁻¹) 3468, 2933, 1715, 1648, 1450, 1381, 1254, 1132, 1099, 1068; ¹H NMR (300 MHz, CDCl₃) δ 7.05 (dd, $J = 9.5, 5.9 \,\mathrm{Hz}, 1 \mathrm{H}$, 6.99–6.87 (m, 1H), 6.27 (d, J = 9.9 Hz, 1 H, 5.40 (dd, J = 5.9, 3.0 Hz, 1 H), 4.85 (ddd, J = 6.0, 3.0, 0.9 Hz, 1H), 4.47 (ddd, J = 11.7, 6.0,6.0, 2H), 4.34 (q, J = 6.9 Hz, 1H), 1.87–1.79 (m, 6H), 1.43 (d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃)

δ 174.7, 166.2, 161.5, 140.4, 138.9, 127.0, 124.8, 76.6, 66.6, 62.3, 61.2, 20.0, 14.3, 11.9; ESI HRMS calcd for $[C_{14}H_{18}O_7+Na]^+$: 321.0950, found: 321.1188.

2.7. (5*R*,6*S*)-5-(2-Methyl-2-butenoyloxy)-6-(*tert*-butyldimethylsilanyloxymethyl)-5,6-dihydropyran-2-one (17b)

Alcohol 3 (235 mg, 0.91 mmol) was dissolved in 6 mL of benzene. The solution was cooled to 0 °C and triphenylphosphine (358 mg, 1.37 mmol), tiglic acid (136 mg, 1.36 mmol), and diethyl azodicarboxylate (238 mg, 1.37 mmol) were added to the solution. The solution was stirred for 12h, quenched with saturated aqueous sodium bicarbonate (30 mL), and extracted with EtOAc $(2 \times 30 \text{ mL})$. The organic fractions were combined, washed with brine (30 mL), dried (Na_2SO_4) , and concentrated. Purification on silica gel (EtOAc/hexane, 3:7) yielded 188 mg (0.55 mmol, 61%) of ester 17b as a colorless oil: $R_{\rm f}$ (30% EtOAc/hexane) = 0.65; $[\alpha]_{\rm D}^{25}$ -155° (c 1.20, CH₂Cl₂); IR (thin film, cm⁻¹) 2954, 2932, 2856, 1742, 1716, 1651, 1253, 1130, 837; ¹H NMR (270 MHz, CDCl₃) δ 6.93 (q, J = 6.9 Hz, 1H), 6.82 (dd, J = 9.9, $3.7 \,\mathrm{Hz}, 1\mathrm{H}$, $6.10 \,(\mathrm{dd}, J = 9.9, 1.2 \,\mathrm{Hz}, 1\mathrm{H}), 5.60 \,(\mathrm{ddd}, J = 9.9, 1.2 \,\mathrm{Hz}, 1\mathrm{H})$ J = 5.2, 4.0, 1.2 Hz, 1H, 4.57 (dd, J = 7.9, 4.0 Hz, 1H), 3.85 (dd, J = 4.2, 1.5 Hz, 2H), 1.83-1.80 (m, 6H), 0.85(s, 9H), 0.04 (s, 6H); ¹³C NMR (68 MHz, CDCl₃) δ 166.7, 161.9, 142.1, 139.4, 127.6, 122.9, 80.4, 63.4, 62.5, 25.7, 18.2, 14.5, 12.0, -5.6; calcd for [C₃₀H₃₆O₇Si+Na]⁺: 559.2123, found: 559.2133.

Acknowledgements

We thank both the Arnold and Mabel Beckman Foundation and the National Institute of General Medical Sciences (1R01 GM63150-01A1) for their generous support of this research. Funding for a 600 MHz NMR by the NSF-EPSCoR (#0314742) is also gratefully acknowledged.

References and notes

- 1. Becker, H. Agric. Res. 1996, 44, 4-8.
- 2. Santamour, F. S.; Bentz, S. E. J. Arboric. 1995, 21, 122-131.
- Sinclair, W. A.; Lyon, H. H.; Johnson, W. T. In *Diseases* of *Trees and Shrubs*; Cornell University Press: Ithaca, NY, 1987; p 574.
- 4. Grove, J. F. J. Chem. Soc., Perkin Trans. 1 1985, 865-869.
- Stierle, D. B.; Stierle, A. A.; Ganser, B. J. Nat. Prod. 1997, 60, 1207–1209.
- For the synthesis of cryptocarya diacetate and cryptocarya triacetate, see: (a) Hunter, T. J.; O'Doherty, G. A. Org. Lett. 2001, 3, 2777–2780; (b) Smith, C. M.; O'Doherty, G. A. Org. Lett. 2003, 5, 1959–1962.
- 7. Harris, J. M.; O'Doherty, G. A. *Tetrahedron Lett.* 2000, *41*, 183–187.
- 8. For the application of this approach toward several styryllactone natural products, see: (a) Harris, J. M.; O'Doherty, G. A. *Tetrahedron* **2001**, *57*, 5161–5171; (b) Harris, J. M.; O'Doherty, G. A. *Org. Lett.* **2000**, *2*, 2983–2986.

- Harris, J. M.; O'Doherty, G. A. Tetrahedron Lett. 2002, 43, 8195–8199.
- 10. Harris, J. M.; O'Doherty, G. A. Tetrahedron Lett. 2000, 41, 183–187.
- The Sharpless reaction of vinylfuran occurs with enantioexcess on the order of 90% and requires a re-crystallization of the corresponding bis-benzoates to get enantiomerically pure diol, see: Harris, J. M.; Keranen, M. D.; Nguyen, H.; Young, V. G.; O'Doherty, G. A. *Carbohydr. Res.* 2000, 328, 17–36.
- For a related procedure using lactic acid, see: (a) Ferrero, M.; Galobardes, M.; Martin, R.; Montes, T.; Romea, R.; Rovira, R.; Urpi, F.; Vilarrasa, J. Synthesis 2000, 1608– 1614; (b) Fein, M. L.; Filachione, E. M. J. Am. Chem. Soc. 1953, 75, 2097–2099.
- (a) Grapsas, I. K.; Couladouros, E. A.; Georgiadis, M. P. Polym. J. Chem. 1990, 64, 823–826; (b) Georgiadis, M. P.; Couladoros, E. A. J. Org. Chem. 1986, 51, 2725–2727.
- An Achmatowicz reaction is the oxidative rearrangement of furfuryl alcohols to 2-substituted 6-hydroxy-2H-pyran-3(6H)-ones, see: (a) Ref. 13, Achmatowicz, O.; Bielski, R. *Carbohydr. Res.* 1977, 55, 165–176; (b) For its use in carbohydrate synthesis, see Ref. 12 and Balachari, D.; O'Doherty, G. A. *Org. Lett.* 2000, 2, 863–866; (c) Balachari, D.; O'Doherty, G. A. *Org. Lett.* 2000, 2, 4033–4036.
- 15. Luche, J.-L. J. Am. Chem. Soc. 1978, 110, 2226-2227.
- Previously we have shown that the Mitsunobu esterification reaction works well on pyranone 3, see Ref. 7, Mitsunobu, O. Synthesis 1981, 1.